

Ruby Programming

Hello World

Classes

Overview

● Classes/Objects
● Access Control
● Inheritance
● Conventions
● Using other classes in other gems

Why study Classes?

● Ruby can perform in a functional manner
● Good programming practice
● Write Elegant Code

KISS

● Keep It Simple Stupid

DRY

● Don't Repeat Yourself

Class

● An object/entity representing some “noun” or thing
● Properties/attributes
● Methods/actions
● Can inherit other classes

● Dog
● Name
● Breed
● Color
● Bark
● work

Constructors

● Initializer methods that are called when
creating a new instance of a class

● Instance variables – own distinct set of
variables for an object instance (starts with
@) and can only be used within the class

class Dog
def initialize(name, breed)

@name = name
@breed = breed

end
end

dog = Dog.new(“Bomber”, “Labrador”)

to_s

● A special method that will allow you to
override the string representation of a class
instance

class Dog
def initialize(name, breed)

@name = name
@breed = breed

end

def to_s
“#{@name}”

end
end

dog = Dog.new(“Bomber”, “Labrador”)
puts dog

Attributes

● Attributes are properties of a class/object
● Accessed through methods
class Dog

def initialize(name, breed)
@name = name
@breed = breed

end

def name
@name

end

def to_s
“#{@name}”

end
end

dog = Dog.new(“Bomber”, “Labrador”)
puts dog.name

attr_reader

● Use a symbol to create a readable instance
variable of the same name

class Dog

attr_reader :name, :breed

def initialize(name, breed)
@name = name
@breed = breed

end

def to_s
“#{@name}”

end
end

dog = Dog.new(“Bomber”, “Labrador”)
puts dog.name

Writable Attributes

● Methods ending with “=” and accepts
arguments

class Dog

attr_reader :name, :breed

def initialize(name, breed)
@name = name
@breed = breed

end

def name=(name)
@name = name

end

def to_s
“#{@name}”

end
end

attr_accessor

● Allows you to use symbols for read and
write access of instance variables

class Dog

attr_accessor :name, :breed

def initialize(name, breed)
@name = name
@breed = breed

end
end

dog = Dog.new(“Bomber”, “Labrador”)
puts “Dog's name is #{dog.name} of type #{dog.labrador}”

Virtual Attributes

● Methods that return attribute values in a
different format. Nothing special.

class Book

attr_accessor :title, :price

def initialize(title, price)
@title = title
@price = price

end

def price_in_cents
Integer(@price * 100 + 0.5)

end
end

Access Control

● How much of the methods in a class are
exposed to a user or another program
● Public – can be called by anyone. No control is

enforced (default)
● Private – can be called only by the object

instance itself
● Protected – can be invoked only by objects of

the defining class and its subclasses

Access Control

class MyClass

default is public
def method1
end

private
def method2
end

protected
def method3
end

end

Inheritance

● A relation between two classes in a
hierarchal manner (parent and child)

● Gains the power of the parent
● Can only inherit from one class

class Mammal
def breathe

puts “inhale and exhale”
end

end

class Dog < Mammal
end

dog = Dog.new
puts dog.breathe

Conventions

Local Variable Instance Variable Class/Object Constant

name @name Dog PI

fish_and_chips @fish_and_chips Cat FLEET_PER_MILE

x_axis @x_axis MyClass DEBUG

_26 @_26 ActiveRecord RATE

Gems

● Packaged Ruby classes/libraries/entire
frameworks
● Gives you more functionality in your

applications
● Extends the Ruby language
● Makes life easier

RubyGems

● Command line tool to install gems in an external repository to
be part of your “gemset”
● gem install [gem_name]

● Download gems from multiple sources
● http://rubygems.org
● http://rubyforge.org
● http://ruby-toolbox.com

● Example: Ruby on Rails (gem install rails)
● Places gems in your ruby “classpath”

● In the case of rvm, it installs gems independently of a ruby
installation

http://rubygems.org/
http://rubyforge.org/
http://ruby-toolbox.com/

Installing Rails

● Rails can be installed as a gem with all the
scripts/tools included (assuming you installed
it with rvm)

gem install rails

Running Rails

● You should be able to create a new project by
issuing the following command:

rails new [project_name]
cd [project_name]

rails server

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

