
MIS 21

R. Alampay, C. Ruiz, N. Victorino

Ruby Basics

INFORMATION SYSTEMS &

COMPUTER SCIENCE

INFORMATION SYSTEMS &

COMPUTER SCIENCE

Learning Objectives

Learn basic ruby syntax

Understand classes and types

Execute ruby from the command line

Execute ruby using a web framework

INFORMATION SYSTEMS &

COMPUTER SCIENCE

INFORMATION SYSTEMS &

COMPUTER SCIENCE

Ruby

Designed and developed by Yukihiro “Matz” Matsumoto in the

mid-1990s

Functional, object-oriented and imperative

Dynamic type system

Designed for programmer productivity and fun

Operates under Principle of Least Surprise
Language should behave in such a way that minimizes confusion

Uses a lot of syntactic sugar

INFORMATION SYSTEMS &

COMPUTER SCIENCE

INFORMATION SYSTEMS &

COMPUTER SCIENCE

Hello World (Ruby Version)

Create a file called “hello.rb”
Ruby files usually have the extension rb

Enter the following code: puts ‘hello, world’

In your command line, navigate to the folder where file exists

Type “ruby hello.rb”
ruby is the ruby interpreter

We can also run ruby commands via irb (interactive ruby shell)

INFORMATION SYSTEMS &

COMPUTER SCIENCE

INFORMATION SYSTEMS &

COMPUTER SCIENCE

Hello World (con’td)

Try the following lines
puts “hello, world”

puts(‘hello,world’)

puts ‘hello’, ‘ world’

puts is a method/function

Methods have parameters/arguments
parenthesis is optional and ruby

Also try: p, print

INFORMATION SYSTEMS &

COMPUTER SCIENCE

INFORMATION SYSTEMS &

COMPUTER SCIENCE

Variables

A symbolic name which contains some known or unknown

value.

Try:
message = “hello, world”

puts message

Variables can be any text that is not a ruby keyword

Type is not implied

Ideally, you want a variable to be descriptive of the value that

it contains

Syntax
variable = value

Snake case is used: multiple words separated by underscore

i.e. long_variable_name

INFORMATION SYSTEMS &

COMPUTER SCIENCE

INFORMATION SYSTEMS &

COMPUTER SCIENCE

Variables

In ruby, everything is an object
Everything has properties and methods

No primitive types

In ruby, everything is an expression
Every line of code returns a value

Since no type is specified it is the developers responsibility to

ensure what is contained in a varible and how it is used
Duck Typing (more on this later)

INFORMATION SYSTEMS &

COMPUTER SCIENCE

INFORMATION SYSTEMS &

COMPUTER SCIENCE

Reflection

The ability of classes to define themselves is called reflection

Reflection is a key component in metaprogramming – i.e.

writing programs that can write other programs

Reflection can be used to determine properties about a class

or variable
[something].methods will give us a list of methods

of something

[something].class will give us the class of something

INFORMATION SYSTEMS &

COMPUTER SCIENCE

INFORMATION SYSTEMS &

COMPUTER SCIENCE

String

irb> “this is a string”.class

Represents literal values

Enclosed by either double quotes or single quotes

Double quotes are strings that allow interpolation

message = ‘hello’

puts “the message is #{message}”

Interpolation allows you to place variables inside a string

(instead of concatenating it)

http://www.ruby-doc.org/core-2.1.1/String.html

INFORMATION SYSTEMS &

COMPUTER SCIENCE

INFORMATION SYSTEMS &

COMPUTER SCIENCE

Numbers

Several classes are used for numbers

1.class -> Fixnum

Fixnum.superclass -> Integer

111_000_000.class -> Fixnum

1111111111.class -> Bignum

Bignum.superclass -> Integer

1.2345.class -> Float

INFORMATION SYSTEMS &

COMPUTER SCIENCE

INFORMATION SYSTEMS &

COMPUTER SCIENCE

Operations and methods

+,-,/,*,%

n ** m -> raises n to the power of m

2.even? -> returns true

2.odd? -> returns false

2.next -> returns 3

http://www.ruby-doc.org/core-2.1.1/Float.html

http://www.ruby-doc.org/core-2.1.1/Fixnum.html

INFORMATION SYSTEMS &

COMPUTER SCIENCE

INFORMATION SYSTEMS &

COMPUTER SCIENCE

Nil

When referring to something that does not exists, the value of

nil is used.

Even nil is an object
nil.class -> NilClass

INFORMATION SYSTEMS &

COMPUTER SCIENCE

INFORMATION SYSTEMS &

COMPUTER SCIENCE

Boolean

Used to represent logical (true or false) values

Logical Operators
>, <, <=, >=, !=

and and &&

or and ||

Generic equality (obj == other) -> returns true if obj

and other are the same object

Most methods that return a boolean value usually have a ? at

the end of the method name

INFORMATION SYSTEMS &

COMPUTER SCIENCE

INFORMATION SYSTEMS &

COMPUTER SCIENCE

Symbols

Symbols are “special strings”
Memory efficient

Faster to compare

Mutable (cannot be changed)

Usually not used for display/printing out

Typically used to represents symbols and names

Examples
:test

:a

:symbol

It is a common convention to use symbols as indexes or keys

INFORMATION SYSTEMS &

COMPUTER SCIENCE

INFORMATION SYSTEMS &

COMPUTER SCIENCE

Arrays

Arrays collect objects into one variable

An array can contain any set of values

The values in an array need not be the same type

http://www.ruby-doc.org/core-2.0/Array.html

arr = [1,2,’three’,:big]

arr.size #returns 4

arr << 5 #insert 5 at end of arr

arr[1] #returns 2

INFORMATION SYSTEMS &

COMPUTER SCIENCE

INFORMATION SYSTEMS &

COMPUTER SCIENCE

Enumerable

Enumerable is a mixin that provides for collection classes (like

Array)
mixins are a way of adding functionality to classes

arr.first

arr.each { |x| puts x }

arr.reverse_each do |x|

puts x

end

INFORMATION SYSTEMS &

COMPUTER SCIENCE

INFORMATION SYSTEMS &

COMPUTER SCIENCE

Hashes

A collection of unique keys and values
Also called associative arrays or dictionaries

Similar to arrays but allows you to specify any kind of object as

it’s index

http://www.ruby-doc.org/core-2.0/Hash.html

hsh = {:name => ‘Juan’, :age => 15}

hsh[:name] #returns ‘Juan’

another = {“blah” => 25, “etc” => 5}

another.each_pair {|key, value|

puts “#{key}:#{value}”}

INFORMATION SYSTEMS &

COMPUTER SCIENCE

INFORMATION SYSTEMS &

COMPUTER SCIENCE

Ranges

Try the ff:

(1..5).each {|i| puts i }

(“a”..”z”).each do |letter|

puts letter

end

(10..20).include?(15)

