ROS

Restaurant Ordering System

Restaurant Ordering System
Final Report

12 December, 2015

Submitted to:
Dr. Marlene M. de Leon

Submitted by:
Breginald Jino Basilio
Zachary Ivan Martinez
Kryzl Deanne Pascual
Jenina Isabel Sanchez

Group E

CS123 A

Context of the Project

The Restaurant Ordering System (ROS) is a menu application that aims to make the
ordering process easier for the administrator, customer, and the kitchen staff.

1 i - A
@)l Select Account

ROS

Restaurant 0¢rdering System
Select Account
Admin
Kitchen

Customer

Logout

Figure 1. The account role choosing screen.

The administrator can view and edit the menu. This menu is divided into categories,
and each category can expand to reveal the menu items. The administrator can view the
profile of the menu item by clicking on its name. From this screen, the administrator may also
choose to edit any detail. From the edit menu screen, they may choose to add new menu
items.

- y
i@ Edit Menu

Appetizer
Hotdog

Sushi

Bread

Main
Dessert
Tiramisu
Mango Crepe
Buko Pie
Donut
Beverage
Soup

Meat

Hot Main Courses

Delete Menu Item Add Menu Item

Figure 2. Viewing the menu as administrator

Name: [Sushi Name: |
No Image Price: 1000 No Image Price:
Category; Appetizer Category:
Description: Smells like fish Description:
Tags: rice, crab, mango, cucumber Tags:
Cancel Save Cancel Save
Figure 3. Viewing a menu item profile Figure 4. Adding a new menu item

The kitchen staff can view the list of orders. The order contains the menu item,
quantity, and the table who ordered it. Clicking an order will remove it from the list.

Buko Pie 2

Table Number: 2

Tapa 3

Table Number; 2

Soda 4

Table Number: 3

Icedtea 3
Table Number: 3

Bird's Nest Soup 1

Table Number: 2

Rib eye Steak 1

Table Number: 2

Figure 5. Viewing the order list as kitchen

The customer can view the menu and search for menu items. The search bar checks
for any item containing the query. Clicking Search replaces the menu list with a list of items
that fit the criteria. Clicking the Return button will return the item list to the menu.

Clicking the menu item will bring up the item order profile. The customer may select
the quantity they wish to add to their cart. After clicking Add to Cart, the customer may click
View Cart, then click Finalize to submit their orders to the kitchen.

Customer

5%8 2:00 AM

Allergy Filter

Search Return
off 2 Appetizer
Fish Main
Dessert
Meat Beverage
Soup Soup
Chicken Noodle Soup
Fruit Bird's Nest Soup
Vegetables Meat
Hot Main Courses
Rib eye Steak
View Cart
Figure 6. Viewing the menu as customer
No Image Sinigang
150.0
Hot Search Return
Items containing the query: 'Hot' Pescription: 56 génd
Hot chocolate Tags: pork
Hotdog
Back 1 Add to Cart

Figure 7. Viewing the search results

Figure 8. Viewing the item order profile

Team Organization

Leader:
Martinez

Sub-leader:
Sanchez

Programmer:jProgrammer:

Pascual Basilio

Our team decided to adopt the Modified Hierarchical Team organization. We chose
this because we realized that it is easier to work when there is a leader dividing the work and
telling us what to do next. We decided to have a sub-leader, as well, to assist the leader in
their work. The remaining team members worked mainly as programmers. All members of
the team were tasked with programming their respective parts of the application, as well as
working on the documentation.

Our team communicated in person, through Facebook, and through Messenger. We
used GitHub as our version control and online repository. The leader divided the tasks based
on the team member’s available time and expertise.

Sprint Plans

Sprint User Stories Tasks

2 The user should be able to | Front-end:

October 15 | log-in. T1: Design all the screens for the Android
application.
T2: Implement the log-in screen.
T3: Implement the “choose-user-type”
screen
Back-end:
T4: Design the ERD.
T5: Access the choose-user menu after
logging in

3 The admin should be able to | Front End:

October 29 | log-in. T6: Develop admin’s menu screen

The admin should be able to | 17. pevelop admin menu add/edit item
view the interface.

screen
Back End:
T8: Create the database tables.
T9: Implement the database.
T10: Implement the log-in function for
administrator.
T11: Implement log-in authentication for
administrator.

4 The customer should be able | Front End:

November | to view the menu. T12: Develop customer menu

12 The customer should be able

to add menu items to cart.

T13: Develop customer cart screens
T14: Develop admin bills screens

Back End:

T15: Implement function code of the cart
menu screen

T16: Implement function queries of the cart
menu screen

T17: Implement add function code for
admin user.

T18: Implement add function query for
admin user.

T19: Implement edit function code for
admin user.
T20: Implement edit function query for

admin user.
5 The customers should be | Front End:
November able to send their orders to T21: Develop Kitchen order queue
26 the admin and the kitchen.

The kitchen account should
be able to view queued
orders.

Back End:

T22: Connect cart menu to the database.
T23: Connect customer user to database
T24: Develop kitchen order queue function
T25: Connect kitchen user to database

T26: Implement function code for customer
filter

T27: Implement function query for customer
filter

T28: Implement add function code for
customer.

T29: Implement add function query for
customer.

Activity Network Diagram

T2 T6 7
_rb Kryzl Ivan/Kryz! [Ivan/Kryz!
1lda 2 days; 5 days;
- (1 day) = it (2 days) (5 days)
Ivan Kryzl
(2 days) (2 days) (October 15)
T3
Kryzl b,
START (2 days) o M3
{October 1) (2 days) \(Octnher 29)
T4 T8 T9
Nina — Nina > Jino
(2 days) (1 day) (1 day) T11
Nina
(3 days)
T12 Ti3
Ivan/Kryz! e Ivan/Kryzl
(5 days) (3 days)
T14
»| Ivan/Kryz!
(3 days)
—) —
Ti5 Ti6
M3 M4
Jing — Nina
(October 29) (2 days) (2 days) (November 12)
o D
T17 T18
Jino — Nina
(2 days) (3 days)
T19 > T20
Jino Nina
(2 days) (3 days)
T21
Ivan/Kryz!
(3 days)
T22
» Jing
(2 days)
T23
Nina v
B (2 days) e
M4 M5 FINISH
(November 12) { ber 26) { ber 26)
M T24 125 —s
Nina | — Jino
(2 days) (2 days)
T26 T27
Jino —> Nina
(2 days) (2 days)
T28 T29
Jino — Nina
(2 days) (2 days)

Entity-Relationship Diagram and Data Dictionary

I. Entity-Relationship Diagram

+objectld

+objectld
+username
+password

+restaurant

+ingredient_name
+items]

i
contains
assigned to
;- +objectld
+objectld +item_price +objectld
+rest_name | ISZEEdESC roups| +category _name
+category
T +[item_ingredients]
+tag
N - A
contains
has A
ITEM_ORDER
+objectld
+item _id
+objectld +1‘a£_:fe_1’d
+rest id +paid
+table_number +completed
+quantity
+item_name
+table no

" A

II. Data Dictionary

TABLE NAME: USER

FIELD NAME | DATA TYPE LENGTH PK? FK
objectld String 10 Yes No
username String 10 No No
password String 15 No No
restaurant Pointer<Restaurant> | 10 No Yes
TABLE NAME: RESTAURANT
FIELD NAME | DATATYPE |LENGTH PK? FK?
objectld String 10 Yes No
rest name String 25 No No
TABLE NAME: TABLE
FIELD NAME | DATATYPE LENGTH PK? FK?
objectld String 10 Yes No
rest_id Pointer<Restaurant> | 10 No Yes
table number Int 2 No No
TABLE NAME: MENU_ITEM
FIELD NAME DATA TYPE LENGTH PK? FK?
objectld String 10 Yes No
item_name String 15 No No
item_price Double - No No
item_desc String 40 No No
active Boolean - No No
category Pointer<Category> 10 No Yes

item_ingredients | Array<Pointer<Category>> | - No No

tag String 30 No No
TABLE NAME: INGREDIENT

FIELD NAME | DATA TYPE LENGTH | PK? FK?

objectld String 10 Yes No

ingredient name | String 20 No No

items Array<Pointer<Menu_Item>> | - No No
TABLE NAME: CATEGORY

FIELD NAME | DATA TYPE LENGTH PK? FK?

objectld String 10 Yes No

category name String 20 No No
TABLE NAME: ITEM_ORDER

FIELD NAME | DATA TYPE LENGTH PK? FK?

objectld String 10 Yes No

item_id String 10 No Yes

table id String 10 No Yes

paid Boolean - No No

completed Boolean - No No

quantity Int 2 No No

item name String 15 No No

table no Int 2 No No

Use Case Diagram and Description

SYSTEM

Customer

'
<include=

View
Customer
Menu

.

.
a

<inc lude=

Wiew
Customer
Menu
[tem

<include=

Fnaize) sinciude>
Crders

<include=

i i
<ine lude> <inc lude>

Delete
Menu
Item

Kitchen

Actor

Use Case: View Customer Menu
Author: Group E
Date: SEPT-22-2015
Purpose:
- View the current menu of the restaurant
Overview:
- The admin will log on to the app, and will choose the Customer user type. The system
will load the menu items from the database into the app for the customers to see.
Cross References: View Cart (Use Case), View Customer Menu Item (Use Case)
Actors: Customer
Normal flow of events:

Actor Actions System Actions

1. Admin accesses Customer user type

2. The customer is granted access to the app
Customer screen

3. The system loads the menu item from the
database

4. The system will load the menu in list
form

Exceptional flow of events:
- Step 3 will not succeed if there is no steady Internet connection.

Use Case: View Cart
Author: Group E
Date: SEPT-22-2015
Purpose:

- To see what has the customer ordered so far, including prices of each item and the
total.

Overview:

- The customer will see all of the items ordered and added to the cart so far. It includes
the menu item names, quantity, and also the computer prices per food ordered and the
total cost.

Cross References: View Customer Menu (Use Case)
Actors: Customer
Normal flow of events:

Actor Actions System Actions

1.Admin accesses Customer user type

2. The customer is granted access to the
apps Customer user screen

3. The system loads the menu item from the
database

4. The system will load the menu in list
form

5.The customer selects the “View Cart”
button

6. The system will load the list of menu
items the customer has chosen

7. The system will compute the food prices
with the quantity per food, and compute the
total price.

Exceptional flow of events:
- Step 3 will not succeed if there is no steady Internet connection.

Use Case: View Customer Menu Item
Author: Group E
Date: SEPT-22-2015
Purpose:
- Enables the customer to look at the details of a certain menu item
Overview:
- Whenever the customer will click a certain menu item, data needed is sent over to
another window and will load the necessary details to the corresponding food item
Cross References: View Customer Menu (Use Case), Order Menu Item (Use Case)
Actors: Customer
Normal flow of events:

Actor Actions System Actions

1.Admin accesses Customer user type

2. The customer is granted access to the
apps Customer user screen

3. The system loads the menu item from the
database

4. The system will load the menu in list
form

5. The customer selects a menu item from
the list

6. The system will call a new window

7. The system will check from the menu
item from the database

8. The system will load the details from the
corresponding menu item

Exceptional flow of events:
- Step 3 will not succeed if there is no steady internet connection.

Use Case: Order Menu Item
Author: Group E

Date: SEPT-22-2015
Purpose:

- To allow the customer to add the menu item to the cart, alongside the quantity of said

menu item
Overview:

- When the customer selects a menu item, they are directed to a profile screen, and will

be able to add the menu item from there, alongside the quantity of the menu item for

ordering

Cross References: View Customer Menu Item (Use Case)

Actors: Customer
Post Conditions:

- Cart database will be updated.
Normal flow of events:

Actor Actions

System Actions

1.Admin accesses Customer user type

2. The customer is granted access to the
apps Customer user screen

3. The system loads the menu item from
Parse

4. The system will load the menu in list
form

5. The customer selects a menu item from
the list

6. The system will call a new window

7. The system will check from the menu
item from the Parse database

8. The system will load the details from the
corresponding menu item

9. The system will ask the quantity of food .

10. The customer will decide on the
quantity and adds to the cart.

11. The system will add the information to
the cart

12. The system will add the order to the
Parse database

Alternative flow of events:
- In case the Back or Cancel button was pressed in Step 10, the system will not proceed
to Step 11.
Exceptional flow of events:
- Step 3 will not succeed if there is no steady internet connection.

Use Case: View Order Queue
Author: Group E
Date: SEPT-22-2015
Purpose:
- Check the incoming orders and pull them out if they are done.
Overview:

- The kitchen will see the food that will be incoming, and from which table, and in a
queue fashion. The kitchen only needs to press one order and it will be erased off the
list, signaling its done.

Cross References: None
Actors: Kitchen
Normal flow of events:

Actor Actions System Actions

1. The admin will access the Kitchen
user type.

2. The kitchen is granted access to the
Kitchen user type

3. The system will load the orders from the
database in list form

Exceptional flow of events:
- Step 3 will not succeed if there is no steady internet connection.

Use Case: View Table Orders
Author: Group E
Date: SEPT-22-2015
Purpose:
- To see the orders of a table, using its table number as index.
Overview:
- Usually, the table number is set right before the customer is presented with menu. The
admin will be able to see the tables and their orders.
Cross References: Finalize Table Orders (Use Case)
Actors: Admin
Normal flow of events:

Actor Actions System Actions

1.The admin is logged in to the Admin user
type.

2. The admin chooses to view the table
orders

3. The system will load the current orders
from the database

4. The system will show two lists; one for
the table lists and the other for the lists of a
chosen table.

Exceptional flow of events:
- Step 3 will not succeed if there is no steady internet connection.

Use Case: Finalize Table Orders
Author: Group E
Date: SEPT-22-2015
Purpose:

- Finalize the orders of a certain table.
Overview:

- Basically if a table is finalized, all of the orders are to be uploaded to the database,

and the kitchen will load these new orders.

Cross References: View Table Orders (Use Case)
Actors: Admin
Post Conditions:

- The Order Queue database will be updated.
Normal flow of events:

Actor Actions System Actions

1.The admin is logged in to the Admin user
type.

2. The admin chooses to view the table
orders

3. The system will load the current orders
from the database

4. The system will show two lists; one for
the table lists and the other for the lists of a
chosen table.

5. The admin decides to finalize the orders
from the table

6. The system will upload the orders to the
database.

Exceptional flow of events:
- Step 3 will not succeed if there is no steady internet connection.

Use Case: View Admin Menu
Author: Group E
Date: SEPT-22-2015
Purpose:
- To see the current implemented menu item.
Overview:
- The admin logs in to the app, and accesses the Admin user type, and goes the
currently implemented menu.
Cross References: View Admin Menu Item (Use Case), Add Menu Item (Use Case)
Actors: Admin
Normal flow of events:

Actor Actions System Actions

1. The admin logs in to the app and
accesses the Admin user type.

2. The admin will access the current menu
items.

3. The system load the current menu items
on the database

4. The system will load the menu items in
list form

Exceptional flow of events:
- Step 3 will not succeed if there is no steady internet connection.

Use Case: Add Menu Item
Author: Group E
Date: SEPT-22-2015
Purpose:
- The admin will be able to add a new item on the menu.
Overview:

- The admin will be able to access the currently implemented menu and be able to add
any menu items. The screen will refresh the contents of the new list to accommodate
the latest entry.

Cross References: View Admin Menu (Use Case)
Actors: Admin
Post Conditions:

- The Menu Item database will be updated.
Normal flow of events:

Actor Actions System Actions

1.The admin logs in to the app and accesses
the Admin user type.

2. The admin will access the current menu
items.

3. The system load the current menu items
on the database

4. The system will load the menu items in
list form

5. The admin will add a new menu item

6. The system will now ask the details of
the new menu item

7. The admin has finished putting details
and adds the menu item

8. The system will upload the new menu
item to the database.

9. The system will refresh the list to see the
new implemented items.

Exceptional flow of events:
- Step 3 will not succeed if there is no steady internet connection.

Use Case: View Admin Menu Item
Author: Group E
Date: SEPT-22-2015
Purpose:

- To view the profile containing the price, description and tags of a menu item.
Overview:

- Whenever the admin will click a certain menu item, data needed is sent over to

another window and will load the necessary details to the corresponding food item

Cross References: View Admin Menu (Use Case), Delete Admin Menu Item (Use Case), Edit
Admin Menu Item (Use Case)
Actors: Admin
Normal flow of events:

Actor Actions System Actions

1.The admin logs in to the app and accesses
the Admin user type.

2. The admin will access the current menu
items.

3. The system load the current menu items
on the database

4. The system will load the menu items in
list form

5. The admin selects one of the menu items
in the list

6. The system will call a new window

7. The system will check from the menu
item from the database

8. The system will load the details from the
corresponding menu item

Exceptional flow of events:
- Step 3 will not succeed if there is no steady internet connection.

Use Case: Delete Admin Menu Item
Author: Group E
Date: SEPT-22-2015
Purpose:

- The admin can delete the a menu item
Overview:

- The admin can access the profile from the menu item list., a button will allow the

admin to delete said item.

Cross References: View Admin Menu Item (Use Case)
Actors: Admin
Post Conditions:

- The Menu Item database will be updated.
Normal flow of events:

Actor Actions System Actions

1.The admin logs in to the app and accesses
the Admin user type.

2. The admin will access the current menu
items.

3. The system load the current menu items
on the database

4. The system will load the menu items in
list form

5. The admin selects one of the menu items
in the list

6. The admin will delete the menu item.

7. The system will remove the entry from
the database.

8. The system will refresh the list to
accommodate the data entries.

Alternative flow of events:
- If the Back or Cancel button is pressed in Step 6, the system will not proceed to Step
7.
Exceptional flow of events:
- Step 3 will not succeed if there is no steady internet connection.

Use Case: Edit Admin Menu Item
Author: Group E
Date: SEPT-22-2015
Purpose:
- The admin can edit any details regarding a menu item.
Overview:

- The admin can select any item in the menu, and with a button, can edit the details of
the menu by having the profile screen pop-up, and change any details regarding the
item.

Cross References: View Admin Menu Item (Use Case)
Actors: Admin
Post Conditions:

- The Menu Item database will be updated.
Normal flow of events:

Actor Actions System Actions

1.The admin logs in to the app and accesses
the Admin user type.

2. The admin will access the current menu
items.

3. The system load the current menu items
on the database

4. The system will load the menu items in
list form

5. The admin selects one of the menu items
in the list

6. The admin will delete the menu item.

7. The system will get the details regarding
the item.

8. The system will ask for the details

9. The admin will save any changes

10. The system will refresh the list to
accommodate the data entries.

Exceptional flow of events:
- Step 3 will not succeed if there is no steady internet connection.

Lessons Learned

When we planned on how the team organization will work, we decided to think not
only what would be best on how would the team function together, but on how would we be
able to finish the project, without sacrificing too much time or resources. This allowed the
team to greatly improve the product and at the same time fix the errors, for most of the parts.
Communication also played a big part of the project.

During the project development, we encountered lots of difficulty in managing time
and learning new skills. It was very stressful, but we all came out of it with new knowledge
and a better understanding of creating software and applications. We learned that managing a
team is extremely difficult, especially when said team is also busy with other things.

We designed the project itself by separating the front end and the back end of the
project. That way, all of the members are building up the product alongside both ends, so as
to save a little bit of time. There were times, however, when it was difficult for the back end
to test their code when there was no front end yet (especially at the early stages).

